If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k^2-2k-124=0
a = 1; b = -2; c = -124;
Δ = b2-4ac
Δ = -22-4·1·(-124)
Δ = 500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{500}=\sqrt{100*5}=\sqrt{100}*\sqrt{5}=10\sqrt{5}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-10\sqrt{5}}{2*1}=\frac{2-10\sqrt{5}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+10\sqrt{5}}{2*1}=\frac{2+10\sqrt{5}}{2} $
| 4/7n-3/5=1 | | m/0.05-1.1=4.3 | | 0.064-a/0.4=0.049 | | 12/3g+5=20 | | 4-5(-3-4x)=5(8-x)+4 | | 7(y-15)=4(6+y) | | 4x+7=5x6 | | a/8+7=6 | | 6x1=4x+5 | | 3^x+4=5^x^-6 | | -6a-4=110 | | 3h+5=44 | | 234=h-72 | | 33=4z+1 | | 3x–15=2x-1 | | 180=3x-15+2x+2x+2x+24 | | 2x-11=6+9x | | 22=2+4f | | 27=3+8s | | x(x+2)2=49x | | 13=2v-5 | | 32+9/5c=113 | | 2(3-x)+4x=17 | | 4f+5=29 | | (Y+8)=2y+6= | | (Y+8)=2y+6=30 | | 5x+47=10 | | 6—4x=2x+12 | | P=1.25+0.15n | | x*10+1=2 | | 3(5+3x)–8=88 | | 3x+9=5x^2-1 |